MATHEMATICS

DPP No. 6

Total Marks: 31

Max. Time: 30 min.

Topics: Inverse Trigonometric Function, Fundamentals of Mathematics, Quadratic Equation

Type of Questions					M.M., Min.			
Mult Sho	lle choice Objective (I iple choice objective rt Subjective Question ch the Following (no	(no negative marking ns (no negative mark	g) Q.3 (5 mar ing) Q.6, 7 (3 mar	ks, 3 min.) ks, 4 min.) ks, 3 min.) ks, 8 min.)	[12, 12] [5, 4] [6, 6] [8, 8]			
1.	If $\sin^{-1}\left(a - \frac{a^2}{3} + \frac{a^3}{9} +\right) + \cos^{-1}(1 + b + b^2 +) = \pi/2$, then the value of 'a' and 'b' may be							
	(A) $a = -3 \& b = 1$	(B) $a = 1 \& b = -1/3$	(C) $a = 6 \& b = \frac{1}{2}$	(D) none of the	se			
2.	If sum of the roots of equation, a $(x + 1)^2 + (A) 9$		$ax^{2} + bx + c = 0$ is 12, (C) 12	then the sum of t	he roots of the			
3.	` ,	tion $x^2 + (p + iq)x + 3i =$	()	()	res of the roots			
••	is 8 then:	(B) $p = 3$, $q = 1$		•				
4.	If $\cos^{-1}\left(\frac{n}{2\pi}\right) > \frac{2\pi}{3}$, then the minimum and maximum values, of integer n are respectively							
	(A) - 6 and -3	(B) - 6 and -4	(C) 3 and 6	(D) 4 and 6				
5.		= [sin ⁻¹ x] (where [.] repre (B) (cos 1, sin 1)						
6.	Spot in which step th	ere is error						
	If $f(x) = \sin^{-1}x + \cos^{-1}x + \tan^{-1}x$, so $f(x) = \frac{\pi}{2} + \tan^{-1}x$ Since $-\frac{\pi}{2} < \tan^{-1}x < \frac{\pi}{2}$							
	$\Rightarrow 0 < \tan^{-1}x + \frac{1}{2}$	$\frac{\pi}{2} < \pi \qquad \Rightarrow \qquad 0 < f($	x) < π					
7.	Find the set of all values of 'a' for which the equation, $(1+a)\left(\frac{x^2}{x^2+1}\right)^2 - 3a\frac{x^2}{x^2+1} + 4a = 0$ have real							
	roots.							
8.	Match the following	Match the following						
	O a lumana T			0.41	II			

	Column - I		Column - II	
(A) (B)	The minimum value of $f(x) = x - 4 + x - 6 + x - 2 $ is The total number of solution/solutions of $ x = \cos x $ is/are	(p)	1 2	
(C)	The total number of real roots of equation $\sqrt{x} + \sqrt{x - \sqrt{1 - x}} = 1$ is	(r)	3	
(D)	Number of distinct normal form (3, 2) to the parabola $y^2 = 4x$ is	(s)	4	
		(t)	0	

Answers Kev

- **1.** (B) **2.** (B) **3.** (B)(C) **4.** (B)

- **5.** (B) **6.** Domain [-1, 1]

7.
$$-\frac{1}{2} < a \le 0$$

8. (A) \rightarrow (s), (B) \rightarrow (q), (C) \rightarrow (p), (D) \rightarrow (p)

